Molecules **2022**, 27, 1014 6 of 14

Parameter	Min	Max	Median	Mean	STD
Turbidity	0	1.5	0.05	0.283	0.546
Color	0	59	32	29	18.102
TSS	0	5	1.5	2	1.633
COD	4.8	412	10.05	126.333	170.225
BOD	4.68	31.2	15.315	15.945	9.441
Ammonia	0	2.24	1.35	1.377	0.763
Chromium	0	0.1	0.05	0.05	0.05
Nickel	0	0.06	0	0.019	0.027
Manganese	0.1	0.15	0.105	0.115	0.019

Table 2. Effluent quality characteristics from titanium (anode) to aluminium (cathode) electrode arrangement.

In general, 0 mg/L was also recorded as the minimum concentration value for some other parameters such as ammonia, chromium, and nickel. This is to say that, in some of the experiments, the Ti-Al electrode arrangement was able to completely remove the aforementioned parameters.

An average COD concentration of 126.3 mg/L was achieved from the effluent treated by the Ti-Al electrode arrangement; a difference of 3232.7 mg/L from the raw wastewater. While an average BOD concentration of 15.95 mg/L was achieved when the wastewater was subjected to the Ti-Al electrode arrangement.

2.3.2. Aluminium (Anode) to Titanium (Cathode) Electrode Arrangement (Al-Ti)

Table 3, shows that 0 FAU was recorded as a minimum, maximum, median, and average concentrations from turbidity when the wastewater was subjected to the aluminium (anode) to titanium (cathode) electrode arrangement (Al-Ti). That is to say that, unlike the Ti-Al electrode arrangement, the Al-Ti arrangement was able to completely remove turbidity from the wastewater, and 0 FAU turbidity was recorded from all the experiments sessions.

Table 3.	Effluent	quality	characteristics	from	aluminium	(anode)	to	titanium	(cathode)
electrode arrangements.									

Parameter	Min	Max	Median	Mean	STD
Turbidity	0	0	0	0	0
Color	0	35	19	15	12.298
TSS	0	0	0	0	0
COD	5.5	70.6	21.15	26.567	20.997
BOD	8.08	13	10.21	10.393	1.790
Ammonia	0	1.14	0.9	0.680	0.503
Chromium	0	0.1	0.05	0.050	0.050
Nickel	0	0	0	0	0
Manganese	0.12	0.19	0.15	0.152	0.029

Also, 0 Pt-Co and 0 mg/L were recorded as minimum concentration values for color and TSS, respectively. While 59 Pt-Co was recorded as the maximum concentration value for the color. The average color concentration (15 Pt-Co) is also a bit lower than that was recorded from the Ti-Al electrode arrangement (29 Pt-Co). As for turbidity, 0 mg/L was also achieved as an average concentration for TSS when the wastewater was subjected to the Al-Ti electrode arrangement. Also, that is to say, that, unlike the Ti-Al electrode arrangement, the Al-Ti arrangement was able to completely remove TSS from the wastewater, and 0 mg/L of TSS was recorded from all the experiments sessions.

For some other parameters such as ammonia, chromium, and nickel, 0~mg/L was also recorded as the minimum concentration value. This means, at least once in the experiment sessions, the Al-Ti electrode arrangement was able to completely remove the above parameters.

An average COD concentration of 26.57 mg/L was achieved from the effluent treated by the Ti-Al electrode arrangement. The 26.57 mg/L is 4.8 times lower or 79% lower than